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Motivation: What happens when we build parallel computers so large that some components are certain to fail during
the run of any program? How can we design algorithms and systems to monitor, collect, propagate and analyze data
efficiently on such systems? Indeed, these are critical challenges for exascale applications tool and run-time software
systems: such infrastructure will generate and analyze unprecedented volumes of data primary to the application or
used for secondary services like performance analysis, debugging and resource management.
Our Position: We believe that in order to achieve exascale computing performance, it is compulsory that the research
community explore new approaches to fault-tolerance beyond traditional techniques like checkpoint/restart or task
replication. In particular, it is necessary to investigate techniques that bear no or low overhead during normal (failure
free) operation. The limitations of current techniques have been analyzed and demonstrated in a number of recent
research articles, and it is unclear whether the technological advances necessary to render these techniques viable on
exascale systems can be available given desirable economic and power budgets.
Specific Problems: Eventually, the HPC community will need determine how to ensure that any distributed algo-
rithm can be made reliable, in the sense that it returns the correct output even when multiple processors fail. The
determination of “correct output” is based on the semantics and consistency requirements of the application or algo-
rithm. We focus on ensuring reliability in a restricted computational paradigm: Aggregation Trees (ATs). ATs enable
scalable data gathering and aggregation by enabling any type of distributed computation that can be performed via
communication that is restricted to a tree topology. ATs have proven to be useful in many different domains including
parallel prefix computations [12], general aggregation services [3, 5, 8, 17], distributed debugging, performance and
monitoring tools [14, 18, 19, 20], information management systems [16, 21], stream processing [4] and mobile ad
hoc networks (MANETs) [13, 22]. ATs have also been used to improve the scalability and efficiency of higher level
applications like image processing [2] and density clustering. At the systems level, ATs are used for booting, system
diagnostics, job launch and some file operations. The application focus of ATs is efficient and scalable data analysis.

In the AT paradigm, inputs appear as a stream of data at each leaf of the tree, and the output of the desired com-
putation appears at the root. We propose to design efficient and reliable ATs for the following various computational
problems including element count, statistical properties (for example, minimum, maximum and averages), item fre-
quency, sets of elements appearing over a certain frequency threshold and equivalence classification, where elements
are classified according to simple or complex classifiers and algorithms. These computations represent the fundamen-
tal building blocks of many complex analysis techniques in HPC application, tool and run-time system domains

We address both fail-stop faults and the more challenging Byzantine faults, where faulty processors can engage in
any kind of deviations from the protocol, including false messages and collusion. For exascale systems, the latter fault
model becomes more relevant in light of the concern for silent data corruption and other non-corrected data errors.
For efficiency, we demand that the increase in computational resources, when compared with non-reliable aggregation
systems, is at most a small multiplicative constant.

For concreteness, we focus solely on reliability in aggregation trees. Our motivation for focusing only on ATs
is two-fold: (1) Utility: ATs have a proven track record for providing critical services in the HPC domain and (2)
Tractibility: Tree-based computations are among the simplest class of distributed computations that still have practical
applications. We thus believe this is the right class to focus on as a first step to achieving efficient reliability.
Approach and Prior Work: There is no fault-tolerance without some form of temporal or spatial redundancy: ei-
ther data or the computations that generate data must be replicated. We propose to build on recent algorithmic and
mathematical techniques that allow us to break though through some conjectured bottlenecks for reliable computation.
We propose a two-pronged approached based on two fundamental concepts: inherent data redundancies and process
quoroms. In both cases, we focus on the algorithmic properties of various computations and use these properties to
enable very lightweight, scalable and robust operation.

Leveraging Inherent Redundancies In this context, our central observation is that many AT-based computations natu-
rally maintain redundant state amongst the processes in the system. Intuitively, as information is propagated from the
leaves to its root, aggregation state, which generally encapsulates the history of processed information, is replicated at
successive levels in the tree. We have demonstrated that the redundant state from processes that survive failures can
compensate for lost information, thereby avoiding explicit data replication (like checkpointing or message logs) [1].
Our initial technique’s general requirements are that operations be associative and commutative. Our initial work fo-
cused on one compensation mechanism, state composition. In state composition, orphaned processes propagate their



local aggregation state, to their new parents to compensate for any data lost in transit from the orphans to their failed
parent or from the failed parent to the failed parent’s parent. State composition is appropriate for idempotent opera-
tions for which re-processing some input elements does not change the computation’s output. We have demonstrated
that this approach can recover from simultaneous failures in trees with millions of nodes with sub-second recovery
latencies and no overhead during failure free operation.

The future proposed work in this area entails exploring other compensation mechanisms as well as approaches to
incorporate these new techniques with existing fault-tolerant strategies like checkpoint/restart and replication. For ex-
ample, we have already theorized about a second compensation mechanism, state decomposition, that accommodates
non-idempotent operations by precisely computing and compensating only for the lost state. We plan to implement
and evaluate the performance and scalability of this approach, which in its current design is not as lightweight as
our first mechanism. We also plan to investigate other compensation mechanisms to accommodate larger classes of
applications. Another area we plan to explore is the integration with checkpoint/restart and replication techniques.
For example, the application processes as the leaves and root of an aggregation tree can processes may be viewed as
sequential data sources and sinks amenable to sequential checkpointing, which avoids the non-scalable coordination
complexities of distributed checkpointing.

Process Quoroms We propose to build on new algorithmic and mathematical techniques developed in recent re-
sults [10] that allow us to break though through some conjectured bottlenecks for reliable computation. These al-
gorithmic and mathematical techniques include: 1) the use of quorums, which are small sets of processor, mostly
non-faulty, that can work together as single functional units [10, 7]; 2) randomized fingerprinting algorithms that al-
low us to check the results of a large number of computations efficiently [6]; and 3) a novel distributed technique that
ensure that each faulty node can cause only a limited number of corruptions1 in an amortized sense [11] .

Unfortunately, many of these approaches developed by the distributed algorithms community are not yet practical
for HPC, since in order to achieve reliability, they require a blowup in resources that is at least logarithmic in the
network size. A novelty of our proposed research is that we will insist on a blowup in resources that is at most a
small constant. To achieve this improvement, we plan to circumvent certain efficiency lower bounds by leveraging off
1) the pipelined nature of AT computations; and 2) new self-healing algorithms [9, 15, 11] that make local changes
to the overlay network topology whenever a faulty computation is detected. Our approach will achieve an amortized
efficiency in the following sense: we bound the total computational and communication overhead that any particular
faulty processor can cause. We anticipate this research goal can be achieved within a three year time frame.

Key to our approach will be the use of quorums: small subsets of processors that work together to form a single,
robust functional unit. Assume n is the number of processors in the network and that the fraction of faulty processors is
f < 1/3. Then a supernode will consist of C log n processors, selected uniformly at random with replacement from the
set of all processors, where C is a tunable constant that controls robustness. The expected number of faulty processors
in a supernode will then be fC log n, much less than a majority. If faults in the network occur independently, and there
are a polynomial number of such supernodes, then a simple application of Chernoff and union bounds shows that for
some value C, the probability that all supernodes have a majority of good processors approaches 1 as n gets large.

• Challenges addressed: This work addresses the exascale OS/R challenges of robustness and resilience in infras-
tructure for tools, applications and run-time systems.

• Maturity: In both prongs of our approach, we the viability of our approaches have been demonstrated in peer-
reviewed publications at selective venues.

• Uniqueness: Exascale systems pose the unique challenge of unprecedented system scales that dramatically
exacerbate the need for lightweight fault-tolerance techniques.

• Novelty: Checkpoint/restart and replication based fault-tolerance solutions are the predominant ones in HPC.
The proposed solutions offer significantly new directions compared to these traditional approaches.

• Applicability: While we focus on HPC domains, our techniques are generally applicable to any computational
environment including “enterprise” computing.

• Effort: This is a multi-year effort that entails more conceptual and design space explorations in the early years
and infrastructure development and empirical validations in the out years.

1Specifically O(log∗n), where log∗ n is the very slowly growing iterated logarithm function; if n is the number of atoms in the universe,
log∗ n = 6
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